Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 18(5): e0284497, 2023.
Article in English | MEDLINE | ID: covidwho-2315812

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effectiveness of hand debridement (HD) versus ultrasonic dental scaler (UDS) for the treatment of experimental periodontitis (EP) in rats. MATERIAL AND METHODS: Thirty 3-month-old male rats were used. EP was induced around the mandibular first molars (right and left). Seven days after induction, the treatments with either HD (n = 30) or UDS (n = 30) were randomly performed in each molar. Euthanasia were performed at 7, 15, and 30 days after treatment. Histometric (percentage of bone in the furcation [PBF]), histopathological, and immunohistochemical (for detection of tartrate-resistant acid phosphatase [TRAP] and osteocalcin [OCN]). Parametric data (PBF and TRAP) was analyzed by One-way ANOVA followed by Tukey's post-test. OCN was analyzed by Kruskal-Wallis followed by Student-Newman-Keuls post-test. The level of significance was 5%. RESULTS: Group HD presented higher PBF and lower TRAP-immunolabeling at 30 days as compared with UDS in the same period (p≤0.05). Group HD presented higher OCN immunolabeling at 30 days as compared with 7 and 15 days (p≤0.05). Persistent and exacerbated inflammatory process was observed in some specimens from group UDS at 30 days, as well as the bone trabeculae presented irregular contour, surrounded by many active osteoclasts. CONCLUSION: Nonsurgical periodontal therapy with HD resulted in higher PBF and lower expression of TRAP as compared with UDS. Also, HD increased the expression of OCN over time.


Subject(s)
Alveolar Bone Loss , Periodontitis , Rats , Male , Animals , Rats, Wistar , Alveolar Bone Loss/pathology , Ultrasonics , Periodontitis/pathology , Research Design
2.
Front Immunol ; 13: 872695, 2022.
Article in English | MEDLINE | ID: covidwho-1952330

ABSTRACT

The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.


Subject(s)
COVID-19 , Endotoxemia , Extracellular Traps , Periodontitis , Endotoxemia/metabolism , Humans , Lipopolysaccharides/metabolism , Neutrophils , Periodontitis/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1267621

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
4.
Biofactors ; 47(1): 6-18, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-950385

ABSTRACT

Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Docosahexaenoic Acids/therapeutic use , Lipoxins/therapeutic use , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Distress Syndrome/drug therapy , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Herpes Simplex/drug therapy , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Influenza, Human/drug therapy , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/virology , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL